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Abstract

The region of convergence of a polynomial series
∑

anqn is determined, provided the (weak)
asymptotic zero distribution of the sequenceqn and thenth root asymptotics of their leading coeffi-
cients is known.
© 2005 Elsevier Inc. All rights reserved.
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Let {qn} be a sequence of polynomials and{�n} a sequence of complex numbers. The
largest open set in which the series

∞∑
n=0

�n qn(z) (1)

converges locally uniformly is called the convergence region of series (1).
Peixuan [2] gives a partial characterization of possible regions of convergence of polyno-

mial series as countable unions of pairwise disjoint simply connected domains. Moreover,
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under the assumptions that

lim sup
n→∞

|�n|1/n = � ∈ ]0, 1[ , sup
|z|=1

|qn(z)| = |qn(1)| = 1

and that the zeros of theqn are given by perturbed roots of unityei�(n)
k with

2(k − 1)�
n

< �(n)
k � 2k�

n
(k = 1,2, . . . , n)

he shows that the region of convergence is the disk{z ∈ C : |z| < 1/�}.
In this note we use potential theory to give a general description of the region of con-

vergence when the asymptotic zero distribution in the weak-star sense and thenth root
behaviour of the leading coefficients of the polynomialsqn are known. The results are
formulated in terms of the following notions (see, for instance,[1,3]).
For a unit (Borel-) measure� in C, denote by

U�(z) =
∫

log
1

|z − �| d�(�) (z ∈ C)

its logarithmic potential. Ifq is a polynomial of degreek with zeros�1, . . . , �k (taking
into account multiple zeros), then�q denotes the corresponding normalized zero counting
measure, i.e., the unit measure�q = 1

k

∑k
j=1 ��j

associating equal mass 1/kwith each
zero. Note that, ifq is monic, then

U �q (z) = log
1

|q(z)|1/k
(z ∈ C) . (2)

For a compact setE ⊂ C there exists a unit measure�E onE with minimal energy

I (�E) =
∫ ∫

1

|z − �| d�E(z)d�E(�).

Moreover, by the Frostman theorem,U�E �VE := I (�E) in C andU�E = VE quasi-
everywhere (see below) onE . The measure�E is called equilibrium distribution ofE , VE

is the Robin constant and cap(E):= e−VE the capacity ofE.�E is unique if cap(E) >0. In
this case, the non-negative functiong(z, ∞) := VE − U�E (z) is referred to as the Green’s
function ofC \ E with pole at∞.
A relation is said to hold quasi-everywhere, if it holds everywhere, except for a set of

zero capacity.
We say that a sequence{�n} of unit measures inC converges to a unit measure� in the

weak-star sense (notation:�n

�→ �), if

lim
n→∞

∫
f d�n =

∫
f d�

for every continuous functionf with compact support.
In what follows,� will be a unit measure with compact support. In addition, let{�n} be

an arbitrary sequence of complex numbers and set

� := lim sup
n→∞

|�n|1/n. (3)



142 M. Götz / Journal of Approximation Theory 135 (2005) 140–144

Theorem 1. Suppose that{pn} is a sequence of monic polynomials of degree n with�pn

�→
�. Assume that all zeros are contained in some fixed bounded set.Then the series

∞∑
n=0

�n pn (4)

diverges quasi-everywhere in

{z ∈ C : U�(z) < log �}.

Proof. Letm ∈ N be arbitrary and let

x ∈ Km :=
{
z ∈ C : U�(x)� log

(
� − 1

m

)
− 1

m

}
. (5)

From (3) we deduce that there exists a subsequence� = �(m) ⊂ N such that

|�n|1/n�
(
� − 1

m

)
(n ∈ �). (6)

Now, suppose that series (4) converges inx . Then there existsn0 such that|�n| |pn(x)|�1
for all n�n0. By (6),

1� |�n|1/n|pn(x)|1/n �
(
� − 1

m

)
|pn(x)|1/n

=
(
� − 1

m

)
exp{−U �pn (x)} (n0�n ∈ �)

or, taking into account (5),

U �pn (x)� log

(
� − 1

m

)
�U�(x) + 1

m
(n0�n ∈ �). (7)

On the other hand, the lower envelope theorem[3, Theorem I.6.9] and�pn

�→ � (along�)
imply that

U�(z) = lim inf
��n→∞

U �pn (z) (8)

quasi-everywhere, i.e., for allz ∈ C \ �, where� = �(m) is a set of zero capacity. By (7),
x ∈ �(m). The statement of the theorem follows since the countable union of sets of zero
capacity is of zero capacity. �

Theorem 2. Suppose that{pn} is a sequence of monic polynomials of degree n with�pn

�→
� and that all zeros are contained in some fixed bounded set.Then series(4) converges in

{
z ∈ C : U�(z) > log �

}
.

This convergence is locally uniform,providedU� is continuous.
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Proof. Suppose first thatU� is continuous. LetK ⊂ {U� > log �} be compact, and let
ε > 0 be such thatU�� log(� + ε) + ε onK . By the principle of descent[3, I.6.8],

lim inf
n→∞ U �pn (z)�U�(z) uniformly onK.

Hence, for some indexn0 = n0(ε),

1

n
log

1

|pn(z)| = U �pn (z)� log(� + ε) (z ∈ K, n�n0).

We may assumen0 so large that, in addition,|�n|1/n�� + ε/2 for all n�n0. Therefore,

|�n| |pn(z)|�(� + ε/2)n (� + ε)−n (z ∈ K, n�n0),

which implies

∞∑
k=n

|�k| |pk(z)|�
∞∑

k=n

(
� + ε/2

� + ε

)n

(z ∈ K, n�n0).

Thus, (4) converges uniformly inK .
If U� is not continuous, then the convergence in some pointx can be derived similarly

by consideringK = {x} in the previous arguments.�

In what follows, letE ⊂ C be a compact set with regular complement. ThenU�E (z) =
VE for all z ∈ E. || · ||E denotes the uniform norm onE .

Corollary. Suppose{qn} is a sequence of polynomials of degree n with
||qn||E = 1 and �qn

�→ �E.

Assume that all zeros are contained in a fixed bounded set.Then,for � < 1, the region of
convergence of series(1) is the set{

z ∈ C : g(z, ∞) < log
1

�

}
.

Example. LetE = {z ∈ C : |z| = 1}, the constellation considered in[2].Here,g(z, ∞) =
log |z| for |z|�1.

Proof of the Corollary. Write qn = 	n pn, wherepn is monic. Then

1 = ||qn||E = |	n| ||pn||E � |	n| ||Tn||E � |	n| cap(E)n,

whereTn is thenth Chebychev polynomial forE [3, Theorem III.3.1]. Thus,

|	n|1/n�cap(E)−1. (9)

On the other hand, for some�n ∈ �E,

1 = |qn(�n)| = |	n| |pn(�n)|� |	n| exp{−nU �pn (�n)},
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orU �pn (�n) = log |	n|1/n. Thus, by the principle of descent,

lim inf
n→∞ log |	n|1/n�VE = (U�E )|E.

With (9) it follows that the limit of|	n|1/n equals 1/cap(E)and, therefore,

lim sup
n→∞

|�n 	n|1/n = �
cap(E)

.

Theorem 2 yields that
∑

�n qn = ∑
�n 	n pn converges locally uniformly in

{z : U�E (z) > log� − log cap(E)} = {z : g(z, ∞) < log 1/�}. (10)

Since� < 1, any not-empty open set which is larger than the region (10) intersects with
{z : U�E (z) < log� − log cap(E)}. Hence, by Theorem 1, (10) is in fact the region of
convergence of the series under consideration.�
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